Cauchy-Schwarz inequality

In an inner product space over the field $\mathbb{R}$ or $\mathbb{C}$, given the vectors $u$ and $u$

$$ |\langle u,v \rangle| \leq \| u \|\cdot\| v \| $$

with equality holding $u$ and $v$ are linearly dependent.

Examples:

$$ \left|u_{1} \bar{v}_{1}+\cdots+u_{n} \bar{v}_{n}\right|^{2} \leq\left(\left|u_{1}\right|^{2}+\cdots+\left|u_{n}\right|^{2}\right)\left(\left|v_{1}\right|^{2}+\cdots+\left|v_{n}\right|^{2}\right) $$

$$ \left|\int_{\mathbb{R}^{n}} f(x) \overline{g(x)} d x\right|^{2} \leq \int_{\mathbb{R}^{n}}|f(x)|^{2} d x \int_{\mathbb{R}^{n}}|g(x)|^{2} d x . $$

________________________________________

________________________________________

________________________________________

Author of the notes: Antonio J. Pan-Collantes

antonio.pan@uca.es


INDEX: